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Abstract. Electron states and hopping conductivity of a periodic lateral lattice of large quantum
dots are studied taking into account the Coulomb effects. The intradot electron-electron repulsion
produces the Hubbard gap which exceeds the single-electron levels spacing. The fluctuations of
the number of impurities per a dot causes the redistribution of electrons and softens the Hubbard
gap. The energy of interdot exitation varies from zero to the dot charging energy Uc. The
variable range hopping with the typical hopping energy determined by Uc was demonstrated to
be a predominant mechanism of low temperature transport.

Introduction

A periodic quantum dot lattice has brought a new goal for the solid state study, provided
the artificial solid with controlled parameters such as the number of electrons per a cell,
strength of electron-electron interaction, strength of interatomic tunnelling etc. More-
ovei; the scale of typical parameters has changed. The importance of electron-electron
interaction gives rise to the Coulomb blockade, which is rather classical than quantum
phenomenon.

This work was stimulated by some new experimental results on metal-non-metal
transition at the crossover from antidots to quantum dots [1, 2]. The purpose of the
present work is the theoretical study of electron states and hopping electron transport in
a lattice of tunnel-coupled large quantum dots. We shall demonstrate that the intradot
Coulomb interation leads to the appearance of Hubbard gap in the electron spectrum of
the system. The fluctuations of the number of electrons per a dot smooths the gap up,
producing the gapless Hubbard insulator. It will be shown that the activation energy of
hopping conductivity is determined by the dot charging energy The absence of hard
gap tends to the variable range hopping in the low temperature case.

The typical sizes of modem dots lays between 100 and 500 nm. For usual electron
density of 1011-12 cm- 2 this gives 50-200 electrons per a dot. The other important
parameter is the Coulomb energy per electron. It has the value of capacitive charging of
a dot, Uc = e2 /2C, where C is the effective capacity of the order of the dot size. The
typical value of Uc has the order of 1 meV. The large number of electrons determines a
gaseous picture of electron distribution inside a dot. The typical Fermi energy referred to
the dot bottom is 10 meV. The distance between energy levels is -= EF/n - 10-1 meV,
where n is the mean number of electrons per a dot. The 2D screening length has the
order of Bohr radius, - 8.3 nm, which is sufficiently less than the dot size. Hence
the dot has a plain bottom, strongly differs from the lattice of dots with parabolic
confinement potential, considered by [3]. The other parameter, tunnelling factor t, is
very easily controlled, varying from the maximal value EF/I-/-n for barrierless dots to
the exponentially small value.
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Hence we shall deal with such hierarchy of parameters as

n»>1, EF > gc >>, t < Ucg. (1)

This combination of parameters is unusual. The large interaction makes inapplicable
the single-electron models, like Anderson-Mott one, while the large number of electrons
per a dot makes inapplicable the usual "single electron per single site" Hubbard model.
The small ratio of interaction energy to the Fermi energy means near ideality of electron
gas inside a dot, while large Uc/,1 parameter determines the strong involvement of in-
teraction into the energy levels distribution. The presence of tunnelling permits electron
to propagate along the lattice of dots, while the small value of t determines that in the
first approximation it does not affect on the electron states of a single dot.

Another complications is the large number of electron levels in a dot. It leads to the
statistical picture of levels distribution, like Wigner-Dyson one. From the other hand,
the levels of different dots are independently distributed, so this distribution does not
affect to the electron jumps between dots.

The situation, when the Coulomb interaction in a dot is determinative for electron
states and transport is typical for Coulomb blockade. The last deals with the tunnelling
between Fermi lakes via single or few dots. In this case the finite Hubbard gap for
transport appears. The difference of our problem from the mentioned one is caused by
multiplication of quantum dots into the lattice.

Electron states

Let us consider electron states in a dot, neglecting tunnelling between dots. In the
gateless system the number of electrons in a dot is determined by the number of the
impurities in it. If this number is the same for all dots, say N, the system should be the
Hubbard insulator with N-th filled Hubbard band. Really, N fluctuates. The fluctuation
of this quantity has the order of statistical fluctuations N. In the first approximation the
large dot is electrically neutral and the number of electrons coincides with the number
of impurities.

In the second approximation, we should take into account the fluctuations of the
Fermi energy caused by the fluctuations of electron density. The value of these fluc-
tuations is A = EF/v-N. In equilibrium, the fluctuations of Fermi level are smoothed
by the redistribution of electrons among dots and corresponding shifts of dot bottoms.
This mechanism works if the number of electrons is large enough and A exceeds Uc.
If A is less than Uc, the redistribution has no profit, giving loss in energy. If A > Uc
(the case is typical), redistribution occurs. The number of redistributed electrons 6nj
in a dot j is determined by the potential, necessary to equalize the local fluctuations of
Fermi energy Aj = EF(Nj - N)/N. As a rule, the equation e2 6nj/2C = Aj gives the
fractional Sn j .

The discreeteness of 6nj tends to impossibility to equalize the remainder of order of
potential, produced by a single electron per a dot. The residual local distances between
the filled states and the Fermi level Uj are uniformly distributed within the range (0, Uc).

In other words, the last occupied state can not be below the Fermi level more than
e2 /2C, else the next level will be filled. The same is true for the first empty level: if it
exceeds the Fermi energy more than e2/2C, there should be another empty one, below
the first on the distance e2/2C. The first empty level in each dot is separated from the
last filled by the distance Uc.
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The activation energy for a jump between the fixed dots varies from 0 to 2Uc. Hence
the global energy gap vanishes, while local one is finite. We call this system a gapless
Hubbard insulator.

The single-electron density of states for additional electron (hole) neglecting tun-
nelling linearly vanishes with the distance to the Fermi energy:

S M2S(E - CE-xif IE-/,I<e2 /2C (2)p(E) -- d= 7he

and
S M2
( m if JE- ip >e2 /2C (3)

where S is the quantum dot arrea, d is the lattice period. This behaviour, originating
from intrasite e-e interaction, is similar to 2D Coulomb gap [4], caused by intersite
interaction. Notice that their meanings are different.

The quantum dot lattice is an art-made system of Fermi lakes. Previously disordered
system of Fermi lakes was discussed in the theory of strongly dopped and strongly
compensated semiconductors [4]. In this situation the Hubbard gap is not much essential
because it has the same order as the mean level spacing.

Electron transport

Below we shall neglect t in consideration of energy spectrum and take it into account
to consider transport in the lattice. The conductivity of the system is determined by
electron hoppings between dots. The problem may be separated on two parts, finding a
tunnel exponent and hopping optimization. We studied the probability of tunneling by
means of single electron Hamiltonian of Anderson model

H = + iatai Z{+tataj,1-Q +H.c.} (4)
ia ij

Here ci = -Ui for filled ci = Uc - Ui for empty states. At high temperature the
transitions between the nearest neighbors take place. At low temperatures the long range
hopping is preferable due to minimization of activation energy. These hoppings can be
performed by means of virtual transitions through the intermediate dots, accompanied
by the emission (absorption) of phonons at the start or in the finish.

Optimization of hopping probability together with the construction of percolation
network of limited strong hopping gives the conductivity:

S- exp [-(To/T)1 / 3 ], (5)

where To = 413UC log2(Uc/t), /3 - 13.8. The hopping length is
10=d[( 10• ) 1/3]. 6l0=dIo u (6)

t

The square brackets denote the integer part.
The formula (6) is valid for low temperature region T < Uc/(2 log Uc/t). For high

temperatures an electron prefers to jump onto the nearest neighbore.
Hence the effective conductivity is

o, -(t/auc,)2 exp( 3T )" (7)
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Discussion

We would like to compare the difference of transport in a quantum dot lattice and in
impurity band. An impurity usually can confine a limited number of electrons. The
Hubbard gap is usually too weak or too strong, so that the energy of A+, AO and A-
states have very different scales. In the case of impurity system in semiconductors the
upper Hubbard A- state is known as an origin of so called "E2" conductivity. The energy
of this state is very low, compared to the ground state of hydrogen-like impurities. In
non-compensated donor system there are no long range Coulomb forces and the states
of additional electrons (A--states) and holes (A+-states) on impurities are separated by
a hard gap.

The principle feature of the quantum dot considered is a large number of electrons in
a dot. As a result, the Hubbard energy is small, compared to not ionization bariers only,
but to intradot Fermi energy The electron gas inside quantum dot has a weak, pertur-
bative interaction. But the Coulomb energy is rather strong if one consider transport
between dots, for Uc > t.

An ideal quantum dot system should exhibit many Hubbard bands. The slow change
of chemical potential leads to subsequent filling of subsequent Hubbard bands. So
properties of the system should periodically alternate from metal to insulator. We expect
this picture at least if tunnelling is strong enough and is not affected by phase-destroying
thermal fluctuations.

The fluctuations of impurity numbers are much more important. If the fluctuations
of local Fermi energy, caused by them, exceed the tunnelling amplitude, they result in
the appearance of a gapless Hubbard insulator. When considering the gapless Hubbard
insulator we neglect the influence of tunnelling on electron states, focusing on the case
of hopping conductivity. We belive that the tunnelling may substantially change the
properties of a gapless Hubbard insulator converting it to a "bad" metal.

The system considered is not exotic and is characterized by parameters, which are
usual for lateral superlattices based on semiconductor heterostructures. It means the
possibility of experimental realization of the predicted gapless Hubbard insulator.
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